Synthesis and Enhanced Field-Emission of Thin-Walled, Open-Ended, and Well-Aligned N-Doped Carbon Nanotubes
نویسندگان
چکیده
Thin-walled, open-ended, and well-aligned N-doped carbon nanotubes (CNTs) on the quartz slides were synthesized by using acetonitrile as carbon sources. As-obtained products possess large thin-walled index (TWI, defined as the ratio of inner diameter and wall thickness of a CNT). The effect of temperature on the growth of CNTs using acetonitrile as the carbon source was also investigated. It is found that the diameter, the TWI of CNTs increase and the Fe encapsulation in CNTs decreases as the growth temperature rises in the range of 780-860°C. When the growth temperature is kept at 860°C, CNTs with TWI = 6.2 can be obtained. It was found that the filed-emission properties became better as CNT growth temperatures increased from 780 to 860°C. The lowest turn-on and threshold field was 0.27 and 0.49 V/μm, respectively. And the best field-enhancement factors reached 1.09 × 105, which is significantly improved about an order of magnitude compared with previous reports. In this study, about 30 × 50 mm2 free-standing film of thin-walled open-ended well-aligned N-doped carbon nanotubes was also prepared. The free-standing film can be transferred easily to other substrates, which would promote their applications in different fields.
منابع مشابه
Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study.
The geometrical structures and field emission properties of pristine and N-doped capped (5,5) single-walled carbon nanotubes have been investigated using first-principles density-functional theory. The structures of N-doped carbon nanotubes are stable under field emission conditions. The calculated work function of N-doped carbon nanotube decreases drastically when compared with pristine carbon...
متن کاملSynthesis of multi-walled carbon nanotubes by combining hot-wire and dc plasma-enhanced chemical vapor deposition
Multi-walled carbon nanotubes (MWCNTs) have been grown on 7 nm Ni-coated substrates consisting of crystalline silicon covered with a thin layer (10 nm) of TiN, by combining hot-wire chemical vapor deposition (HWCVD) and direct current plasma-enhanced chemical vapor deposition (dc PECVD), at 620 -C. Acetylene (C2H2) gas is used as the carbon source and ammonia (NH3) and hydrogen (H2) are used ei...
متن کاملOptimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes
Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...
متن کاملA Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کاملA Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کامل